# DISAGGREGATING DEMOGRAPHIC FACTORS OF LABOUR CHANGE IN TRINIDAD AND TOBAGO 

Sonkarley T. Beaie*

Bureau of Statistics, Guyana


#### Abstract

Age pattern of labour force participation for women is generally observed to be irregular in many countries; showing withdrawal and re-entry into labour force several times during the course of their active lives. In contrast to Trinidad and Tobago, the age pattern does not seem to present this undulated feature; and besides, the number of working women has tremendously increased, but there is no recent study to indicate the component parts of these changes in comparison to men. This paper attempts to investigate these changes by constructing a series of male and female labour force life tables, which are useful in studying labour force entry on account of population growth and the desire to participate as factors of labour force supply, and deaths and retirements on the other hand, as depletion factors. The findings may provide ways for policy-makers to determine appropriate estimates of work life expectancy for workers who suffer a loss of earnings due to injury or death.


Keywords: Labour force, Working life expectancy, Total life expectancy, Labour force replenishment, Labour force replacement rate, Labour force replacement ratio, Age pattern of work, Active years and Inactive years.

## INTRODUCTION

## An overview of age pattern of work in Trinidad and Tobago

The age pattern of women's participation rates in Trinidad and Tobago is dome shape, rising gradually from low to a maximum point, and thereafter falling consistently to a bare minimum within the retirement age groups, generally depicting the overall age pattern of labour force participation for men. Beaie (2009) noted that the differences between the two are presumably due to low participation rates of women as compared to men. The pattern is contrary for women in many countries, where Cotter
et al. (2004) described women's age pattern of participation as double maxima pattern; noting that the likelihood that an average woman will be in the labour force varies substantially over her life; and that many of them exit the labour force when they become mothers; as such, labour force participation rates have traditionally been lower for women in the late 1920s through early 1940s than they were for younger women or older women.

Similarly, United Nations (1968) emphasised that one major problem which generally limits the interpretation of female economically active life tables is the pattern

[^0][^1]of their participation rates. In many countries, women withdraw and re-enter labour force several times during the course of their active lives; thus, making it impossible to apply the assumption, "all persons who enter the labour force at any time in their lives do so prior to the age at which the activity rate reaches its maximum, and no survivors retire into inactive status prior to that age". They are not alone to comment on the way women work. For example, Amara and Braima (2006) said caution needs to be exercised in making direct comparison in working life expectancies between males and females because of the peculiar nature of female employment. Females are more likely to have their working life interrupted for various reasons such as marriage, pregnancy, etc. than males, and Mallela and Wilcox-Gok (2003) using what they called 'fuller models', concluded that marital status and the number of dependent children have significant influence on women's probability of employment.

Noting the findings of the earlier researchers, the 2000 census results for Trinidad and Tobago showed tremendous changes in the size of female labour force exemplified by the age pattern described; but, there is no recent study to show the demographic components of these changes in comparison to the men.

## Objectives of the study

This study attempts to analyse the quantitative aspects of the male and female labour force in 2000, by constructing a series of labour force life tables, which are useful in studying the process of growth and structural changes of the labour force. The specific objectives include to:

- compute the length of active life
- calculate the loss of active years by mortality
- estimate basic indices of labour force growth, such as labour force entry and replacement rates, and rates due to losses by deaths and retirements and other related measures and
- conclude and make recommendations.


## METHODOLOGY

By definition, the Working Life Expectancy (WLE) refers to the average number of years that a person is likely to spend in the labour force during his/her lifetime. It begins with a hypothetical cohort of 10,000 newborns, who are subject to age-specific mortality risks and rates of labour force accession.

## Data requirements

The following data are required in the computation of an abridged working life table:

- population in five year age groups
- deaths in five year age groups or mortality life tables for males and females and
- age specific labour force participation rates.


## Assumptions

The construction of the abridged working life tables follows an earlier techniques developed by the United Nations (1968) and Kpedekpo (1969), which were based on the following assumptions:

- that all persons who enter the labour force at any time in their lives do so prior to the age at which the activity rate reaches its maximum, and no
survivors retire into inactive status prior to that age
- that the ages at which individuals retire are independent of the ages at which they enter the labour force and
- that the rate of mortality at each age is the same for economically active and inactive persons.


## DETAILED CALCULATIONS AND RESULTS

Measures of the length of active life

Table 1 sets the numerical comparison of male and female economically active and total life expectancies. The expectation of inactive years for each age group was obtained by subtracting active life at that age group for each sex separately from the

Table I Measures of length of active and inactive life for males and females, Trinidad and Tobago: 2000

| Age | Male |  |  | Female |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Expectation of life |  |  | Expectation of life |  |  |
|  | In total years ( $\mathrm{e}_{\mathrm{ox}}$ ) | In labour force ( $\mathrm{e}_{\mathrm{wx}}$ ) | In inactive years | In total years ( $\mathrm{e}_{\mathrm{ox}}$ ) | In labour force ( $\mathrm{e}_{\mathrm{wx}}$ ) | In inactive years |
| (1) | (2) | (3) | $(4)=(2)-(3)$ | (5) | (6) | $(7)=(5)-(6)$ |
| 0 | 68.3 | 36.6 | 31.7 | 73.7 | 21.9 | 51.8 |
| 1-4 | 68.9 | 37.4 | 31.4 | 73.8 | 22.2 | 51.6 |
| 5-9 | 65.2 | 37.6 | 27.6 | 69.9 | 22.2 | 47.7 |
| 10-14 | 60.3 | 37.7 | 22.6 | 65.0 | 22.3 | 42.7 |
| 15-19 | 55.5 | 37.8 | 17.7 | 60.1 | 22.3 | 37.8 |
| 20-24 | 50.7 | 36.0 | 14.7 | 55.2 | 21.4 | 33.8 |
| 25-29 | 46.1 | 32.0 | 14.1 | 50.4 | 18.6 | 31.8 |
| 30-34 | 41.7 | 27.7 | 14.0 | 45.6 | 15.6 | 30.0 |
| 35-39 | 37.3 | 23.4 | 14.0 | 40.7 | 12.7 | 28.0 |
| 40-44 | 33.1 | 19.1 | 14.0 | 35.9 | 10.0 | 26.0 |
| 45-49 | 29.0 | 14.8 | 14.1 | 31.2 | 7.2 | 24.0 |
| 50-54 | 24.9 | 10.6 | 14.3 | 26.6 | 4.7 | 21.9 |
| 55-59 | 21.2 | 6.7 | 14.5 | 22.3 | 2.7 | 19.6 |
| 60-64 | 17.9 | 3.3 | 14.6 | 18.3 | 1.2 | 17.1 |
| 65-69 | 14.7 | 1.5 | 13.2 | 14.6 | 0.5 | 14.1 |
| 70-74 | 12.0 | 0.8 | 11.2 | 11.4 | 0.3 | 11.1 |
| 75-79 | 9.7 | 0.5 | 9.2 | 8.6 | 0.1 | 8.5 |
| 80+ | 7.8 | 0.3 | 7.5 | 6.5 | 0.1 | 6.4 |

Note: Derived from Appendices 1 and 3
total expectation of life (i.e., male's inactive years $=$ col. 2 minus col.3). These estimates were extracted from Appendices 1 and 3 and transcribed in Table 1 for easy reference to compare male and female estimates of length of active life.

The result shown in Table 1 and graphically depicted in Figure 1 reflects a familiar pattern of working life, declining gradually with age. The differences between males and females are more noticeable in early ages and diminish gradually with increasing age, but with males average remaining years of active work life being greater than females throughout across the ages. For example, a newly born baby boy and baby girl would expect to live for 68.3 years and 73.7 years respectively, out of which 36.6 years and 21.9 years would be spent in
the labour force. This reciprocally, implies that, they would spend an average of 31.7 years and 51.8 years, respectively in inactive life. Similarly, an inactive male who has reached the official working age of 15 years old in Trinidad and Tobago, could expect to live for 55.5 years, 37.8 years of which would be spent in the labour force, and for a female reaching the official working age of 15 years old in Trinidad and Tobago, she could expect to live for 60.1 years, 22.3 years of which would be spent in the labour force.

On the whole, the number of years spent by females in inactive life is more than twice that of males ( 37.8 years against 17.7 years); an undisputable finding depicting the interruption of female's labour force participation due to various factors such as marriage, child-

Fig. 1: W orking Life Expectan cy by Age and Se x, Trini dad an d Tobago: 2000


[^2]bearing and upbringing, etc., in Trinidad and Tobago (Table 1 and Figure 1).

## Loss of active years by mortality

The estimate of average remaining years of active life for survivors in the labour force at the beginning of year of age and inactive life as presented in Table 1 is an aggregate, because not all members of the labour force would pass those stages; hence, accordingly, some may die while passing through and others would survive, and exit from the
labour force either by means of voluntary retirement due to exhaustion of age, and forced retirement due to employer's rules and regulation as well as disability to continue working. As such, the second intermediate variable, which is death of active persons, is presented to account for the loss of active years by mortality.

The calculation to first derive the gross years of active life is carried out in Table 2 by applying the age-specific activity rates to the five-year age interval or number of years

Table 2 Calculation of gross years of active life in ages 15 years and over, and 15-79 years for males and females, Trinidad and Tobago: 2000

| Age | Male |  |  |  |  |  | Female |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Number of <br> years in age <br> interval | Age specific <br> activity rates | Average <br> number of <br> active years in <br> age interval | Age specific <br> activity rates | Average <br> number of <br> active years in <br> age interval |  |  |  |
| $(1)$ | $(2)$ | $(3)$ | $(4)=(2) \times(3)$ | $(4)$ | $(5)=(2) \times(4)$ |  |  |  |
| $15-19$ | 5 | 38.9 | 1.95 | 18.4 | 0.92 |  |  |  |
| $20-24$ | 5 | 86.2 | 4.31 | 58.3 | 2.92 |  |  |  |
| $25-29$ | 5 | 93.9 | 4.70 | 61.0 | 3.05 |  |  |  |
| $30-34$ | 5 | 94.8 | 4.74 | 58.3 | 2.91 |  |  |  |
| $35-39$ | 5 | 94.9 | 4.74 | 56.2 | 2.81 |  |  |  |
| $40-44$ | 5 | 94.5 | 4.72 | 55.8 | 2.79 |  |  |  |
| $45-49$ | 5 | 92.8 | 4.64 | 51.9 | 2.59 |  |  |  |
| $50-54$ | 5 | 88.3 | 4.41 | 43.5 | 2.17 |  |  |  |
| $55-59$ | 5 | 75.9 | 3.79 | 31.8 | 1.59 |  |  |  |
| $60-64$ | 5 | 42.6 | 2.13 | 14.6 | 0.73 |  |  |  |
| $65-69$ | 5 | 17.3 | 0.86 | 5.8 | 0.29 |  |  |  |
| $70-74$ | 5 | 9.6 | 0.48 | 3.4 | 0.17 |  |  |  |
| $75-79$ | 5 | 6.5 | 0.33 | 2.1 | 0.10 |  |  |  |
| $80+$ | 10 | 3.9 | 0.39 | 1.2 | 0.12 |  |  |  |
| Total, 15-79 |  | - | 41.81 | - | 23.06 |  |  |  |
| Total, 15\& over | - | 42.19 | - | 23.16 |  |  |  |  |

Note: Age interval for 80 years and over is arbitrarily set at 10 because no significant number of persons work after 90 years in Trinidad and Tobago
expected in each age group. The interval for the open age, eighty years and over was arbitrarily set at ten years, based on the assumption that no significant number of persons would continue to work in Trinidad and Tobago after age 90.

The gross active years are therefore calculated and reflected in Table 2, giving number of years an individual passing through each age interval would be economically active. For instance, the gross active years for the males, 20-24 years is 4.3 years, $25-29$ years is 4.7 years and so on. The gross active years of the entire age range, 15 years upward, is derived as a summation of the gross active years across the age groups; hence, the measure comes to 42.2 years for males and 23.2 years for females. The gross active life then yields to 41.8 years and 23.1 years for males and females respectively, when the age range is limited to those 15-79 years (Table 2).

However, our main interest is not simply the gross years of active life, but to indicate:

- the effects of mortality on the expectation of active life at birth and
- the effects of mortality at the beginning age of entries into the labour force.

The loss by mortality, derived as a difference between total gross years of active life and expectation of active life or 'net years of active life' is reflected in Table 3. And, given that the expectation of active life at birth is 36.6 years and 22.3 years, respectively for males and females, 5.6 years and 0.9 years represent loss of active years due to mortality. This subsequently implies that mortality affects males' active life at birth to greater degree than females (about $15.4 \%$ as compared to only $4.0 \%$ among the females).

Table 3 Summary measures of mortality influence on labour force, Trinidad and Tobago: 2000

| Measures of mortality influence on labour force | Male |  | Female |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Active years in all ages 15 and over | Active years in all ages between $15 \& 79$ | Active years in all ages 15 and over | Active years in all ages between $15 \& 79$ |
| 1. Gross years of active life | 42.2 | 41.8 | 23.2 | 23.1 |
| 2. Expectation of active life at birth | 36.6 | 37.7 | 22.3 | 22.3 |
| 3. Loss of active years by mortality (1-2) | 5.6 | 4.1 | 0.9 | 0.8 |
| 4. Expectation of active life at age 15 | 37.8 | 37.7 | 22.3 | 22.3 |
| 5. Loss of active years by mortality after age 15 (1-4) | 4.4 | 4.1 | 0.9 | 0.8 |
| 6. Percent of active years lost due to mortality at birth (\%) | 15.4 | 11.0 | 4.0 | 3.6 |
| 7. Percent of active years lost due to mortality at age 15 (\%) | 11.7 | 11.0 | 4.0 | 3.6 |

Note: Derived from Appendices 1 and 3 and Table 2

Similarly, loss of active years by mortality at the beginning age of entry into the labour force was estimated as 4.4 years for the males, which represents $11.7 \%$ of male active life, and 0.9 years for females, which also accounts for $3.6 \%$ (Table 3).

In all cases, despite the higher longevity of women in Trinidad and Tobago, the estimates of gross and active life expectancies are higher for men than women (see Tables 2 and 3), a finding which reflects the gender differences in labour force participation in the country.

## Indices of labour force growth

One of the principal uses of economically active life tables is to estimate the indices of labour force growth or crude rates of the labour force replenishment, measured by new entrants on the one hand, and its depletion by deaths and retirements on the other. These crude rates were derived by applying the age-specific rates in Appendices 2 and 4 to the figures for the corresponding age groups in the actual labour force and inactive population. For easy reference, some figures of a portion of the economically active life tables are transferred from the two Appendices and inserted in Table 4 and used to derive the rates shown in Table 5. For example, using Table 4 to illustrate, the entry rate for males was calculated by dividing the total estimated number of net annual entries in column 6, by the total active male population in column 3, multiply by 1000 (i.e., $10,887 / 307,099 \times 1,000$ ). The same procedure was repeated for retirements and losses by deaths of active persons for males and females separately. The difference between the rate of entries and the sum of the rates of retirements and losses by deaths is known as labour force replacement rate. The replacement rate, also considered to be an index of potential labour force growth, comes to 19.1 per 1,000 of the
male labour force, and 26.1 per 1,000 of the female labour force in 2000 (Table 5).

Another important index is the labour force supply and depletion factors, measured by replacement ratio, generated from Table 4 and summarised in Table 5 also for easy reference. The ratio is referred to as (UN, 1968) "an index of the pressure the labour market represented by demands of entering workers for jobs, in proportion to number of jobs being vacated by retirement and death". The replacement ratio for males is derived by dividing the annual number of entries into the labour force by the sum of retirements and losses by death multiply by 100 (i.e., $\{10,887 /(3,383+1,648) \times$ 100\}). This result implies that of the population factors which influence labour force growth, deaths and retirements account for lesser proportion; and as such, the replacement ratio is significantly high in Trinidad and Tobago. For example, every 100 males and females leaving the labour force by deaths and retirements, they are replaced by approximately 216 and 314 new entrants, and for every 1,000 , by 2,164 and 3,135 new entrants and so on respectively (Table 5).

## Average age of entry and exit from labour force

The mean age of entry and exit is an important indicator for policy formulation relating to the length of working life. It enables policy makers to set employment rate targets for the new entrants and senior citizens and ensure that the public pension system is able to meet the demands of the retired population.

The calculation is carried out by taking the net entry and retirement by age as reflected in Table 4, columns 6 and 7 for males, and columns 12 and 13 for females respectively to represent gross figures. The result of the
Table 4 Estimates of annual losses from labour force by deaths and retirements, and gains by entries from inactive population, males and females;

| Age | Male |  |  |  |  |  | Female |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Population |  |  | Estimated annual number of |  |  | Population |  |  | Estimated annual number of |  |  |
|  | Total | Active | Inactive | Loss by death of active persons | Entries into LF | Retirement from LF | Total | Active | Inactive | Loss by death of active persons | Entries into LF | Retirement from LF |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) |
| 15-19 | 61,730 | 24,015 | 37,715 | 27 | 7,729 |  | 61,121 | 11,250 | 49,871 | 6 | 4,690 |  |
| 20-24 | 49,892 | 42,983 | 6,909 | 67 | 2,744 |  | 48,906 | 28,534 | 20,372 | 20 | 2,085 |  |
| 25-29 | 42,819 | 40,228 | 2,591 | 54 | 318 |  | 42,296 | 25,791 | 16,505 | 17 |  | 8 |
| 30-34 | 40,106 | 38,033 | 2,073 | 178 | 96 |  | 41,035 | 23,919 | 17,116 | 18 |  | 193 |
| 35-39 | 44,818 | 42,514 | 2,304 | 179 |  | 29 | 45,737 | 25,722 | 20,015 | 27 |  | 103 |
| 40-44 | 39,759 | 37,564 | 2,195 | 169 |  | 108 | 39,972 | 22,316 | 17,656 | 37 |  | 165 |
| 45-49 | 33,347 | 30,957 | 2,390 | 188 |  | 235 | 32,660 | 16,938 | 15,722 | 52 |  | 364 |
| 50-54 | 28,049 | 24,758 | 3,291 | 233 |  | 521 | 27,000 | 11,737 | 15,263 | 64 |  | 406 |
| 55-59 | 20,385 | 15,466 | 4,919 | 221 |  | 955 | 20,664 | 6,579 | 14,085 | 64 |  | 343 |
| 60-64 | 15,889 | 6,773 | 9,116 | 149 |  | 935 | 16,697 | 2,439 | 14,258 | 40 |  | 133 |
| 65-69 | 12,637 | 2,186 | 10,451 | 79 |  | 435 | 14,049 | 821 | 13,228 | 23 |  | 25 |
| 70-74 | 9,610 | 922 | 8,688 | 51 |  | 103 | 10,826 | 366 | 10,460 | 17 |  | 7 |
| 75-79 | 6,837 | 446 | 6,391 | 36 |  | 35 | 7,945 | 166 | 7,779 | 13 |  | 4 |
| $80+$ | 6,480 | 254 | 6,226 | 17 |  | 27 | 9,260 | 107 | 9,153 | 8 |  | 4 |
| Total | 412,358 | 307,099 | 105,259 | 1,648 | 10,887 | 3,383 | 418,168 | 176,685 | 241,483 | 406 | 6,775 | 1,755 |

[^3]Table 5 Labour force entry and exit rates, replacement rate and ratio, males and females; Trinidad and Tobago: 2000

| Index of labour force growth | Annual crude rate |  |
| :--- | ---: | :---: |
|  | Male | Female |
| 1. Gains by entries per 1,000 labour force | 35.5 | 38.3 |
| 2. Losses by retirements per 1,000 labour force | 11.0 | 9.9 |
| 3. Losses by death per 1,000 labour force | 5.4 | 2.3 |
| 4. Replacement rate per 1,000 labour force $\{(1)-(2+3)\}$ | 19.1 | 26.1 |
| 5. Replacement ratio per 100 | 216.4 | 313.5 |

Note: Derived from Table 4

Table 6 Average age of entry and exit/retirement from labour force by sex, Trinidad and Tobago: 2000

| Measure | Male | Female | Total |
| :--- | :---: | :---: | :---: |
| 1. Average age of entry into labour force (in years) | 18.5 | 18.6 | 18.6 |
| 2. Average age of exit/retirement from labour force (in years) | 57.2 | 50.2 | 56.7 |

Note: Derived from Table 4
calculation is reflected in Table 6, and shows that the median age or about $50 \%$ of both males and females in Trinidad and Tobago enter labour force by 18.6 years. This finding is in line with the school enrolment pattern in the country, where by this age (Beaie, 2009), only very small percentage of the school age children are still in school. Although $50 \%$ of males and females who entered labour force do so by age 18.6 years, but on average, the males are deemed to stay seven years longer than the females (see Table 6), when the result also shows that the male median age of retirement from labour force is 57.2 years and 50.2 years for the females.

## CONCLUSIONS AND RECOMMENDATIONS

Work-life expectancy represents the expected length of life spent in the labour force; thus it is an estimate of the average
expected number of years every males and females in Trinidad and Tobago will work. The calculation begins with a hypothetical cohort of 10,000 births of employed males and females who survived to each specific age. It provides useful indicators such as labour force replacement rate and replacement ratio, and average expected working years of entry into and exit or withdrawal from labor force.

The measures are very useful to policy-makers, for they are used to determine changes in the labour force, expected total consumption and output by different age groups. Social security system also uses working life table estimates to settle social security claims and benefit payments arising from occupational injury by their contributors.

Taking into consideration that the average remaining years of active life could be disrupted by periods of unemployment
arising from factors such as occupational injuries, redundancies, sickness, etc., one would conclude that working life for females in Trinidad and Tobago is short, despite the longevity of females as compared to the males. Also, the high labour force replacement ratio means that the job market in Trinidad and Tobago would have to create additional jobs of $54 \%$ and $68 \%$, respectively, of whatever existing size of males and females exiting from labour force annually in order to curb with the surplus labour supply. However, these results requires further investigations, for instance, using cohort activity rates over a long period technique adopted by Durand (1948) or using multivariate approach to determine factors that influence women's decision to enter labour force in Trinidad and Tobago.

Finally, the low working life for females implies that there is a need to set clear targets to increase the participation rate of women and establish policy to delay their exit from the labour force. Apart from this, research on developing working life tables for Trinidad and Tobago should be prioritized because of its usefulness. In the absence of such scientific means of computing benefits, lawyers or the court system in Trinidad and Tobago may arrive at compensation claims arbitrarily or rely on guess work for workers affected due to injuries or death.

## REFERENCES

Amara, P.S. and Braima, S.J. (2006) Working Life Tables, in Republic of Sierra Leone 2004 Population and Housing Census, Life Tables for Sierra Leone, Online: http://www. statistics.sl/2004\ Pop.\ \&\ 
Hou.\%20Census\%20Analytical\%20
Reports/2004\%20Population\%20and\%20
Housing\%20Census\%20Report\%20on\%20
Life\%20Tables.pdf
Beaie, S. T. (2009) CARICOM Capacity
Development Programme (CCDP) 2000
Round of Population and Housing Census Data Analysis Sub-Project, National Census Report, Trinidad and Tobago

Cotter, D.A., Hermsen, J.M. and Vanneman, R. (2004) Gender Inequality at Work Prepared for the Russell Sage Foundation and Population Reference Bureau, Online: http://www.bsos.umd.edu/ socy/vanneman/papers/Cotteretal.pdf
Durand, J.D. (1948) Labour Force in the United States, 1890 - 1960, New York, Social Science Research Council.

Kpedekpo, G.M.K. (1969) 'Working life tables for males in Ghana 1960', Journal of the American Statistical Association, Vol. 62, No. 320.

Mallela, D. and Wilcox-Gok, V. (2003) Employment Experience as a Predictor of Current Employment, Department of Economics, Northern Illinois University, Online: http://www.niu.edu/econ/research_series/ art200315.pdf

United Nations (1968) Methods of Analysing Census Data on Economic Activities of the Population, UNDESA, Population Studies, No. 43.

| Appendix 1: Abridged Table of Economically Active Life, Male Population of Trinidad and T |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Economic activerate (\%) |  | $\begin{gathered} \begin{array}{c} \text { Survivors at } \\ \text { beginning of age } \\ \text { group } \end{array} \\ \hline \end{gathered}$ |  | Stationary population |  | Subsequent year instationarypopulation |  | Average remaining life time at beginning of age group years of: |  |  | $\begin{array}{c}\text { Component of Annual Change in Number of Economically Active } \\ \text { Persons During Age Interval }\end{array}$  |  |  |  |  |  |  |
|  |  |  |  | $\begin{array}{r} \text { Death of } \\ \text { pers } \end{array}$ |  |  | $\begin{aligned} & \text { active } \\ & \text { ons } \\ & \hline \end{aligned}$ | Net en econo act |  |  |  | ies into ically ity | $\begin{aligned} & \text { Net re } \\ & \text { into ina } \end{aligned}$ | ements <br> ive status |
| $\begin{array}{\|r\|r\|} \text { Age } \\ \text { interval } \\ \hline \end{array}$ | $\begin{array}{r} \text { Within } \\ \text { age } \\ \text { group } \end{array}$ | Beginn ing of age group |  |  | Pop 1, | $\begin{gathered} L F \\ \mathbf{1}_{w x} \end{gathered}$ |  |  | $\begin{array}{r} \text { Pop } \\ \mathbf{L}_{x} \end{array}$ |  | $\begin{gathered} \text { Pop } \\ \mathbf{T}_{x} \end{gathered}$ | $\begin{gathered} \mathbf{L F}^{2} \\ \mathrm{~T}_{\mathrm{wv}} \end{gathered}$ | $\begin{array}{r} \mathbf{P o p} \\ \mathbf{e}_{\mathrm{e}} \end{array}$ | $\begin{aligned} & \mathbf{L F} \\ & \mathbf{e}_{w x} \end{aligned}$ | Inactive years |  | Number | $\begin{array}{r} \text { Rate } \\ \text { per } \\ 1000 \\ \text { active } \\ \hline \end{array}$ | Number | Rate per 1000 active | Number | Rate per 1000 active |
| (1) | (2) | $\begin{array}{r} (3)= \\ \left(1_{5}+1_{6}\right) \\ 2 \\ 2 \end{array}$ | (4) | $\begin{array}{r} (5)= \\ (4) *(3) \end{array}$ | (6) | $\begin{gathered} (7)= \\ (6) *(\mathbf{2}) \end{gathered}$ | (8) | (9) | $\begin{gathered} (10)= \\ (8) /(4) \end{gathered}$ | $\begin{gathered} (11)= \\ (9) /(4) \end{gathered}$ | $\begin{array}{r} (12) \\ =(10)- \\ (11) \end{array}$ | (13) | (14) | $\begin{array}{r} (15) \\ =(14) / \\ 7 \end{array}$ | (16) | $\begin{array}{r} (17)= \\ (16) /\{(6)- \\ (7)\} \end{array}$ | (18) | $\begin{array}{r} (19) \\ =(18) /(7) \\ \hline \end{array}$ |
| 0 | 0 | 0 | 10,000 | 0 | 9,781 | 0 | 682,527 | 365,673 | 68.25 | 36.57 | 31.69 |  |  |  |  |  |  |  |
| - 4 | 0 | 0 | 9,766 | 0 | 38,892 | 0 | 672,746 | 365,673 | 68.89 | 37.45 | 31.44 |  |  |  |  |  |  |  |
| 5-9 | 0 | 0 | 9,724 | 0 | 48,570 | 0 | 633,854 | 365,673 | 65.19 | 37.61 | 27.58 |  |  |  |  |  |  |  |
| 10-14 | 0 | 0 | 9,704 | 0 | 48,461 | 0 | 585,283 | 365,673 | 60.31 | 37.68 | 22.63 |  |  |  |  |  |  |  |
| 15-19 | 38.9 | 0 | 9,680 | 0 | 48,293 | 18,787 | 536,822 | 365,673 | 55.46 | 37.78 | 17.68 | 6,026 | 21 | 1.1 | 6,047 | 204.9 |  |  |
| 20-24 | 86.2 | 62.5 | 9,637 | 6,026 | 47,968 | 41,326 | 488,530 | 346,886 | 50.69 | 35.99 | 14.70 | 2,574 | 64 | 1.5 | 2,638 | 397.2 |  |  |
| 25-29 | 93.9 | 90.1 | 9,550 | 8,600 | 47,429 | 44,559 | 440,562 | 305,560 | 46.13 | 32.00 | 14.14 | 293 | 59 | 1.3 | 352 | 122.7 |  |  |
| 30-34 | 94.8 | 94.4 | 9,421 | 8,893 | 46,744 | 44,328 | 393,133 | 261,001 | 41.73 | 27.70 | 14.02 | -95 | 207 | 4.7 | 112 | 46.5 |  |  |
| 35-39 | 94.9 | 94.8 | 9,276 | 8,798 | 45,861 | 43,503 | 346,389 | 216,673 | 37.34 | 23.36 | 13.98 | -213 | 183 | 4.2 |  |  | 30 | 0.7 |
| 40-44 | 94.5 | 94.7 | 9,068 | 8,585 | 44,752 | 42,281 | 300,528 | 173,170 | 33.14 | 19.10 | 14.04 | -312 | 190 | 4.5 |  |  | 122 | 2.9 |
| 45-49 | 92.8 | 93.7 | 8,833 | 8,272 | 43,402 | 40,292 | 255,776 | 130,889 | 28.96 | 14.82 | 14.14 | -550 | 245 | 6.1 |  |  | 306 | 7.6 |
| 50-54 | 88.3 | 90.5 | 8,528 | 7,722 | 41,449 | 36,585 | 212,374 | 90,597 | 24.90 | 10.62 | 14.28 | -1,115 | 344 | 9.4 |  |  | 771 | 21.1 |
| 55-59 | 75.9 | 82.1 | 8,051 | 6,608 | 38,611 | 29,294 | 170,925 | 54,012 | 21.23 | 6.71 | 14.52 | -2,227 | 418 | 14.3 |  |  | 1,809 | 61.8 |
| 60-64 | 42.6 | 59.2 | 7,393 | 4,380 | 35,059 | 14,945 | 132,314 | 24,718 | 17.90 | 3.34 | 14.55 | -2,394 | 330 | 22.1 |  |  | 2,064 | 138.1 |
| 65-69 | 17.3 | 30.0 | 6,631 | 1,987 | 30,463 | 5,270 | 97,255 | 9,773 | 14.67 | 1.47 | 13.19 | -1,240 | 191 | 36.2 |  |  | 1,049 | 199.1 |
| 70-74 | 9.6 | 13.4 | 5,555 | 747 | 24,759 | 2,375 | 66,792 | 4,504 | 12.02 | 0.81 | 11.21 | -396 | 131 | 55.2 |  |  | 265 | 111.7 |
| 75-79 | 6.5 | 8.1 | 4,349 | 350 | 18,465 | 1,205 | 42,033 | 2,128 | 9.67 | 0.49 | 9.18 | -192 | 97 | 80.5 |  |  | 95 | 78.8 |
| $80+$ | 3.9 | 5.2 | 3,037 | 159 | 23,568 | 924 | 23,568 | 924 | 7.76 | 0.30 | 7.46 | -159 | 62 | 66.8 |  |  | 97 | 104.9 |
| Note (1): Pop = Population LF = Labour force, and Columns 4, 6, 8 and 10 were extracted from Male Life Tables for Trinidad and Tobago. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Appendix 2: Calculation of Component of Change in Numbers of Economically Active Survivors During 5 Years Age Intervals, and Annual Losses by Deaths and Retirements and Gains by Entries from Inactive Population: Males, Trinidad and Tobago: 2000 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { Age } \\ \text { interva } \end{array}$ | $\begin{gathered} \text { Survivors at } \\ \text { age x of } 10,000 \\ \text { born alive } \end{gathered}$ |  | Stationary population in age interval |  | Increase(+) ordecrease () ofeconomicallyactivesurvivorsduringageintervals | Death of economically active persons during age interval |  |  | Net entries into economic activity (+)of net retirement <br> $(-)$ during age intervals |  |  | $\begin{array}{\|c} \text { Active } \\ \text { populati } \\ \text { on } \\ \hline \end{array}$ | $\text { if } \begin{gathered} \text { Inactive } \\ \text { populati } \\ \text { on } \end{gathered}$ | Annual Losses from Labour Force by Deaths and Retirements and Gains by Entries from the Inactive Population |  |  |  |  |  |
|  |  |  | Mortal <br> ity rate <br> 1000 <br> $\mathrm{n}_{\mathrm{x}}$ | First estimat e of deaths |  | $\begin{array}{\|l} \text { Adjuste } \\ \text { d } \\ \text { estimat } \\ \text { e of } \\ \text { deaths } \\ \hline \end{array}$ | Entriesorretirement rate | First estimat es entries or retirem ents | Adjusted estimates entries or retiremen ts | Losses from LF by death |  |  |  | Entries into LF |  | $\begin{aligned} & \text { Retirements } \\ & \text { from LF } \end{aligned}$ |  |
|  | $\begin{gathered} \text { Pop } \\ \mathrm{I}_{\mathrm{x}} \end{gathered}$ | $\begin{gathered} \mathbf{L F} \\ \mathbf{1}_{\mathbf{w x}} \end{gathered}$ |  |  |  |  |  |  |  | $\begin{gathered} \text { Pop } \\ \mathbf{L}_{\mathrm{x}} \end{gathered}$ | $\begin{gathered} \mathbf{L F} \\ \mathbf{L}_{\mathrm{wx}} \\ \hline \end{gathered}$ |  |  | $\begin{array}{r} \text { Rate } \\ \text { per } \\ \mathbf{1 0 0 0} \\ \text { of LF } \end{array}$ | $\begin{array}{r} \text { Estima } \\ \text { ted } \\ \text { numbe } \\ r \end{array}$ | $\begin{array}{\|r\|} \text { Rate per } \\ \mathbf{1 0 0 0} \text { of } \\ \text { inactive } \\ \text { pop } \end{array}$ | Estimat ed number | $\begin{array}{r} \text { Rate } \\ \text { per } \\ 1000 \\ \text { LF } \end{array}$ |  |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | $\begin{gathered} (8)= \\ (7) *(5) \end{gathered}$ | (9) ${ }^{\text {a }}$ | (10) | (11) ${ }^{\text {b }}$ | (12) | (13) | (14) | (15) | $\begin{array}{\|l\|} \hline \begin{array}{l} 16) \\ (13) \\ (13) \\ 5) \end{array} \\ \hline \end{array}$ | (17) | $\left.\begin{array}{\|l\|} \hline 18) \\ =(14)^{*}( \\ 17 \end{array}\right)$ | (19) | (20) |
| 15-19 | 9,680 | 0 | 48,293 | 18,787 | 6,026 | 1.11 | 21 | 21 | 53 | 6,039 | 6,047 | 24,015 | 37,715 | 1.11 | 27 | 204.94 | 7,729 |  |  |
| 20-24 | 9,637 | 6,026 | 47,968 | 41,326 | 2,574 | 1.55 | 64 | 64 | 27.52 | 2,640 | 2,638 | 42,983 | 6,909 | 1.55 | 67 | 397.16 | 2,744 |  |  |
| 25-29 | 9,550 | 8,600 | 47,429 | 44,559 | 93 | 1.56 | 70 | 59 | 4.34 | 412 | 352 | 40,228 | 2,591 | 1.33 | 54 | 122.74 | 318 |  |  |
| 30-34 | 9,421 | 8,893 | 46,744 | 44,328 | 95 | 1.77 | 78 | 207 | 0.46 | 43 | 112 | 38,033 | 2,073 | 4.67 | 178 | 46.46 | 96 |  |  |
| 35-39 | 9,276 | 8,798 | 45,861 | 43,503 | -213 | 2.27 | 99 | 183 | -0.18 | -16 | -30 | 42,514 | 2,304 | 4.22 | 179 |  |  | 0.69 | 29 |
| 40-44 | 9,068 | 8,585 | 44,752 | 42,281 | 12 | 35 | 142 | 190 | . 01 | -91 | -122 | 37,564 | 2,195 | 50 | 169 |  |  | 2.8 | 08 |
| 45-49 | 8,833 | 8,272 | 43,402 | 40,292 | -550 | 5.36 | 216 | 245 | -3.11 | -270 | -306 | 30,957 | 2,390 | 6.07 | 188 |  |  | 7.58 | 235 |
| 50 | 8,528 | 7,722 | 41,449 | 36,585 | -1,115 | 8.58 | 314 | 344 | -8.48 | -703 | -771 | 24,758 | 3,291 | 9.40 | 233 |  |  | 21.06 | 521 |
| 55-59 | 8,051 | 6,608 | 38,611 | 29,294 | -2,227 | 13.91 | 407 | 418 | -22.82 | -1,762 | -1,809 | 15,466 | 4,919 | 14.28 | 221 |  |  | 61.75 | 955 |
| 60-64 | 7,393 | 4,380 | 35,059 | 14,94 | -2,3 | 21.9 | 328 | 330 | -29.2 | -2,053 | -2,0 | 6,773 | 9,116 | 22.06 | 149 |  |  | 138.10 | 935 |
| 65-69 | 6,631 | 1,987 | 30,463 | 5,270 | -1,240 | 34.72 | 183 | 191 | -16.52 | -1,006 | -1,049 | 2,186 | 10,451 | 36.20 | 79 |  |  | 199.08 | 435 |
| 70-74 | 5,555 | 747 | 24,759 | 2,375 | -396 | 55.55 | 132 | 131 | -5.39 | -267 | -265 | 922 | 8,688 | 55.23 | 51 |  |  | 111 | 103 |
| 75-79 | 4,349 | 350 | 18,465 | 1,205 | -192 | 88.9 | 107 | 97 | -2.84 | -105 | -95 | 446 | 6,391 | 80.54 | 36 |  |  | 78.77 | 35 |
| $80+$ | 3,037 | 159 | 23,568 | 924 | -159 | 169.54 | 157 | 62 | -5.22 | -246 | -97 | 254 | 6,226 | 66.75 | 17 |  |  | 104.90 | 27 |
| TOTAL |  |  |  |  |  |  |  |  |  |  |  | 307,099 | 105,259 |  | 1647 |  | 10,888 |  | 3,384 |
| Note: a). $\operatorname{Col}(9)=\operatorname{Col}(8) *(\operatorname{Col}(6) /\{(\operatorname{Col}(11)-\operatorname{Col}(8)\}, \mathrm{b}) . \operatorname{Col} .(11)=\operatorname{col} .(10) *(\operatorname{col} .(4) / 5$, and c$) . \mathrm{Col} .(12)=\operatorname{col} .(11) * \operatorname{col} .(6) /\{(\operatorname{coll} .(11)-\operatorname{col}(8)\}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| For convenience, columns 2 to 5 were transferred from Appendix 6.1 and Col.(7) extracted from a prepared Male Mortality Life Table for Trinidad and Tobago. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Appen | A | d | ble of Ec | ic | ctive L | e, Fema | e Popul | of Trim |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  | Compo | $\begin{array}{r} \text { ment of } \\ \text { Act } \end{array}$ | $\begin{aligned} & \hline \text { nnual Ch } \\ & \text { e Person } \end{aligned}$ | hange in ns During | Number <br> Age Int | of Econo rval | mically |
|  | Economic rate | c active (\%) | $\begin{array}{r} \begin{array}{r} \text { Surviv } \\ \text { beginnin } \\ \mathrm{gro} \end{array} \end{array}$ | $\begin{aligned} & \text { ors at } \\ & \text { g of age } \end{aligned}$ up | Statio popul | $\begin{aligned} & \text { onary } \\ & \text { lation } \end{aligned}$ | Subsequen statio | t year in nary ation | Average r at beginn | maining ng of ag ears of: | life time group |  | $\begin{array}{r} \text { Death of } \\ \text { pers } \end{array}$ | f active ons | Net ent economi | $\begin{gathered} \text { tries into } \\ \text { c activity } \end{gathered}$ | Net ret into $i$ st | rements nactive tus |
| $\begin{array}{r} \text { Age } \\ \text { interval } \end{array}$ | $\begin{array}{r} \text { Within } \\ \text { age } \\ \text { group } \end{array}$ | $\begin{array}{r} \text { Beginn } \\ \text { ing of } \\ \text { age } \\ \text { group } \end{array}$ | $\begin{gathered} \text { Pop } \\ \mathrm{I}_{\mathrm{x}} \\ \hline \end{gathered}$ | $\begin{gathered} \text { LF } \\ \mathbf{I}_{\mathrm{wx}} \\ \hline \end{gathered}$ | $\begin{gathered} \text { Pop } \\ \mathbf{L}_{x} \end{gathered}$ | $\begin{gathered} { }^{\mathbf{L F}} \\ \mathbf{L}_{\mathrm{wwx}} \end{gathered}$ | $\begin{gathered} \text { Pop } \\ \mathrm{T}_{\mathrm{x}} \end{gathered}$ | $\begin{gathered} \mathbf{c}^{\mathbf{L F}} \\ \mathbf{T}_{\mathrm{wx}} \end{gathered}$ | $\begin{gathered} \text { Pop } \\ \mathbf{e}_{\mathrm{x}} \end{gathered}$ | $\begin{aligned} & \mathbf{L F} \\ & \mathbf{e}_{\mathrm{wxx}} \\ & \hline \end{aligned}$ | Inactive years | increase <br> (+) or <br> decreas <br> e(-) | Number | $\begin{gathered} \text { Rate } \\ \text { per } \\ 1000 \\ \text { active } \end{gathered}$ | Number | $\begin{array}{r} \text { Rate } \\ \text { per } \\ 1000 \\ \text { active } \end{array}$ | Number | Rate per 1000 active |
| (1) | (2) | $\begin{array}{r} (3)= \\ \left(1_{5}++_{6}\right) \\ 2 \\ 2 \end{array}$ | (4) | $\begin{gathered} (5) \\ (4) *(3) \end{gathered}$ | (6) | $\begin{gathered} (7)= \\ (6) *(2) \end{gathered}$ | (8) | (9) | $\begin{gathered} (10)= \\ (8) /(4) \end{gathered}$ | $\begin{aligned} & (11)= \\ & (9) /(4) \end{aligned}$ | (12) | (13) | (14) | $\begin{array}{r} \hline(15) \\ =(14) / f \\ 7) \end{array}$ | (16) | $\begin{array}{\|r\|} \hline(17)=\mid \\ (16) /\{(6) \\ (7)\} \\ \hline \end{array}$ | (18) | $\begin{array}{r} (19) \\ =(18) /(7) \\ \hline \end{array}$ |
| 0 | 0 | 0 | 10,000 | 0 | 9,867 | 0 | 736,799 | 218,642 | 73.7 | 21.9 | 51.8 |  |  |  |  |  |  |  |
| 1-4 | 0 | 0 | 9,855 | 0 | 39,377 | 0 | 726,932 | 218,642 | 73.8 | 22.2 | 51.6 |  |  |  |  |  |  |  |
| 5-9 | 0 | 0 | 9,837 | 0 | 49,151 | 0 | 687,555 | 218,642 | 69.9 | 22.2 | 47.7 |  |  |  |  |  |  |  |
| 10-14 | 0 | 0 | 9,823 | 0 | 49,085 | 0 | 638,404 | 218,642 | 65.0 | 22.3 | 42.7 |  |  |  |  |  |  |  |
| 15-19 | 18.4 | 0 | 9,811 | 0 | 48,998 | 9,019 | 589,319 | 218,642 | 60.1 | 22.3 | 37.8 | 3,755 | 5 | 0.51 | 3,760 | 94.05 |  |  |
| 20-24 | 58.3 | 38.4 | 9,786 | 3,755 | 48,845 | 28,499 | 540,321 | 209,624 | 55.2 | 21.4 | 33.8 | 2,062 | 20 | 0.71 | 2,083 | 102.36 |  |  |
| 25-29 | 61.0 | 59.7 | 9,751 | 5,818 | 48,675 | 29,681 | 491,476 | 181,125 | 50.4 | 18.6 | 31.8 | -22 | 20 | 0.67 |  |  | 3 | 0.29 |
| 30-34 | 58.3 | 59.6 | 9,718 | 5,795 | 48,502 | 28,272 | 442,801 | 151,445 | 45.6 | 15.6 | . 0 | -251 | 21 | 0.76 |  |  | 230 | 8.07 |
| 35-39 | 56.2 | 57.3 | 9,681 | 5,544 | 48,291 | 27,158 | 394,299 | 123,173 | 40.7 | 12.7 | 28.0 | -147 | 28 | 1.03 |  |  | 119 | 4.00 |
| 40-44 | 55.8 | 56.0 | 9,632 | 5,397 | 47,977 | 26,785 | 346,008 | 96,015 | 35.9 | 10.0 | 26.0 | -254 | 45 | 1.66 |  |  | 209 | 7.40 |
| 45-49 | 51.9 | 53.8 | 9,552 | 5,143 | 47,430 | 24,598 | 298,031 | 69,230 | 31.2 | 7.2 | 24.0 | -660 | 75 | 3.06 |  |  | 584 | 21.52 |
| 50-54 | 43.5 | 47.7 | 9,406 | 4,484 | 46,458 | 20,196 | 250,601 | 44,632 | 26.6 | 4.7 | 21.9 | -1,037 | 109 | 5.41 |  |  | 927 | 34.63 |
| 55-59 | 31.8 | 37.7 | 9,154 | 3,447 | 44,765 | 14,252 | 204,143 | 24,436 | 22.3 | 2.7 | 19.6 | -1,423 | 139 | 9.72 |  |  | 1,284 | 52.21 |
| 60-64 | 14.6 | 23.2 | 8,716 | 2,024 | 41,995 | 6,134 | 159,378 | 10,184 | 18.3 | 1.2 | 17.1 | -1,203 | 101 | 16.41 |  |  | 1,102 | 54.56 |
| 65-69 | 5.8 | 10.2 | 8,033 | 821 | 37,760 | 2,207 | 117,382 | 4,049 | 14.6 | 0.5 | 14.1 | -498 | 62 | 28.02 |  |  | 436 | 30.63 |
| 70-74 | 3.4 | 4.6 | 7,006 | 323 | 31,603 | 1,068 | 79,623 | 1,843 | 11.4 | 0.3 | 11.1 | -171 | 50 | 46.48 |  |  | 121 | 19.76 |
| 75-79 | 2.1 | 2.7 | 5,568 | 152 | 23,512 | 491 | 48,020 | 774 | 8.6 | 0.1 | 8.5 | -91 | 38 | 76.41 |  |  | 53 | 24.07 |
| $80+$ | 1.2 | 1.6 | 3,798 | 62 | 24,508 | 283 | 24,508 | 283 | 6.5 | 0.1 | 6.4 | -62 | 22 | 77.39 |  |  | 40 | 37.17 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |




[^0]:    *Corresponding author: Bureau of Statistics, Guyana; e-mail: sonbeaie@yahoo.com

[^1]:    Copyright © 2010 WASD

[^2]:    Source: Table 1

[^3]:    Note: Derived from Appendices 2 and 4

